Herramienta web para el reconocimiento de arritmias cardíacas: Desarrollo y propuesta educativa
DOI:
https://doi.org/10.26820/reciamuc/9.(4).diciembre.2025.104-116Keywords:
Educación Médica, Electrocardiografía, Arritmias Cardíacas, SNOMED CT, Tecnología Educativa, Recursos WebAbstract
Introducción: El reconocimiento temprano de arritmias cardíacas mediante electrocardiograma (ECG) es una competencia crucial en la formación médica. Sin embargo, la enseñanza tradicional enfrenta limitaciones como la disponibilidad de tiempo práctico y de casos clínicos diversos. Objetivo: Describir el desarrollo y contenido de una página web educativa destinada a la enseñanza básica de arritmias cardíacas, como un recurso accesible para estudiantes de ciencias médicas. Materiales y Métodos: Se desarrolló una herramienta web utilizando HTML, CSS y Node.js. El contenido se basó en 50 registros de ECG seleccionados aleatoriamente de la base de datos PhysioNet "ECG Arrhythmia", representando cinco categorías: ritmo sinusal regular (SR), fibrilación auricular (AFIB), aleteo auricular (AF), taquicardia sinusal (ST) y bradicardia sinusal (SB). La herramienta integra para cada caso el trazado ECG, variables demográficas, texto explicativo y códigos de terminología SNOMED CT. Resultados: Se presenta una herramienta web interactiva que permite el autoaprendizaje guiado. La plataforma muestra de manera simultánea el panel de selección de casos y el trazado ECG, junto con información fisiopatológica y de codificación estandarizada. Conclusión: Esta herramienta web representa un recurso educativo novedoso y replicable que combina el uso de datos reales, fisiopatología y terminología clínica moderna. Su desarrollo sienta las bases para futuros estudios que evalúen su impacto en el aprendizaje y su integración dentro de proyectos de investigación más amplios en telemetría y clasificación de señales ECG.
Downloads
References
Ahmed, A., Ali, W., Abdullah, T., & Malebary, S. (2023). Classifying Cardiac Arrhythmia from ECG Signal Using 1D CNN Deep Learning Model. Mathematics. https://doi.org/10.3390/math11030562
Bai, X., Dong, X., Li, Y., Liu, R., & Zhang, H. (2024). A hybrid deep learning network for automatic diagnosis of cardiac arrhythmia based on 12-lead ECG. Scientific Reports, 14. https://doi.org/10.1038/s41598-024-75531-w
Cantillon, P., Dornan, T., & De Grave, W. (2021). Medical education: Theory and practice. Elsevier.
Chen, T., Huang, C., Shih, E., Hu, Y., & Hwang, M. (2019). Detection and Classification of Cardiac Arrhythmias by a Challenge-Best Deep Learning Neural Network Model. iScience, 23. https://doi.org/10.1016/j.isci.2020.100886
Daydulo, Y., Thamineni, B., & Dawud, A. (2023). Cardiac arrhythmia detection using deep learning approach and time frequency representation of ECG signals. BMC Medical Informatics and Decision Making, 23. https://doi.org/10.1186/s12911-023-02326-w
Din, S., Qaraqe, M., Mourad, O., Qaraqe, K., & Serpedin, E. (2024). ECG-based cardiac arrhythmias detection through ensemble learning and fusion of deep spatial-temporal and long-range dependency features. Artificial intelligence in medicine, 150, 102818. https://doi.org/10.1016/j.artmed.2024.102818
Drew, B. J., Califf, R. M., Funk, M., Kaufman, E. S., Krucoff, M. W., Laks, M. M., ... & Van Hare, G. F. (2014). Practice standards for electrocardiographic monitoring in hospital settings: An American Heart Association scientific statement from the Councils on Cardiovascular Nursing, Clinical Cardiology, and Cardiovascular Disease in the Young. Circulation, 130(15), 2051–2094. https://doi.org/10.1161/CIR.0000000000000097
Ericsson, K. A. (2020). The Cambridge handbook of expertise and expert performance (2nd ed.). Cambridge University Press.
George, P., Reis, S., & de Carvalho-Filho, M. A. (2022). Digital education in health professions: Systematic review of systematic reviews. Medical Teacher, 44(6), 611–623. https://doi.org/10.1080/0142159X.2022.2036710
Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark, R. G., ... & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation, 101(23), e215-e220. https://doi.org/10.1161/01.CIR.101.23.e215
Irfan, S., Anjum, N., Althobaiti, T., Alotaibi, A., Siddiqui, A., & Ramzan, N. (2022). Heartbeat Classification and Arrhythmia Detection Using a Multi-Model Deep-Learning Technique. Sensors (Basel, Switzerland), 22. https://doi.org/10.3390/s22155606
Jaber, H., Aljobouri, H., & Çankaya, I. (2022). Design of a web laboratory interface for ECG signal analysis using MATLAB builder NE. Open Computer Science, 12, 227 - 237. https://doi.org/10.1515/comp-2022-0244
Kadish, A. H., Buxton, A. E., Kennedy, H. L., Knight, B. P., Mason, J. W., Schuger, C., & Tracy, C. M. (2019). ACC/AHA clinical competence statement on electrocardiography and ambulatory electrocardiography. Journal of the American College of Cardiology, 33(3), 588–592.
Kostkova, P., Brewer, H., & de Lusignan, S. (2022). Digital health competencies for clinicians. Journal of Medical Internet Research, 24(3), e32955. https://doi.org/10.2196/32955
Larsen, T. R., Green, M., & Choate, J. (2021). Use of digital ECG resources in medical education: A systematic review. Medical Science Educator, 31(1), 1-10. https://doi.org/10.1007/s40670-021-01322-7
Lin, W., Lin, C., Liu, W., Liu, W., Chang, C., Chen, H., Lee, C., Chen, Y., Wu, C., Lee, C., Wang, C., Liao, C., & Lin, C. (2025). Development of an Artificial Intelligence-Enabled Electrocardiography to Detect 23 Cardiac Arrhythmias and Predict Cardiovascular Outcomes. Journal of medical systems, 49 1, 51. https://doi.org/10.1007/s10916-025-02177-0
M, R., Kodagali, S., & Biswagar, P. (2024). IoT and Web based Cardiac Arrhythmia System using Machine Learning. International Journal for Research in Applied Science and Engineering Technology. https://doi.org/10.22214/ijraset.2024.63092
Mayer, R. E. (2021). Multimedia learning (3rd ed.). Cambridge University Press.
Mohsenabadi, H., et al. (2022). Web-based ECG training and diagnostic accuracy: A systematic review. Journal of Electrocardiology, 72, 45–52.
Mohsenabadi, M. (2022). Efficacy of Mobile Learning to Train Cardiac Arrhythmia Interpretation in Critical Care Nurses. International Journal Of Medical Science And Clinical Research Studies, 2(6), 586-589. https://doi.org/10.47191/ijmscrs/v2-i6-07
Pokharel, A., Dahal, S., Sapkota, P., & Chhetri, B. (2024). Electrocardiogram (ECG) Based Cardiac Arrhythmia Detection and Classification using Machine Learning Algorithms. ArXiv, abs/2412.05583. https://doi.org/10.48550/arxiv.2412.05583
Raupach, T., et al. (2020). Learning ECG interpretation: A systematic review. Medical Education, 54(12), 1100–1110.
Reyna, M. A., Sadr, N., & Goldberger, A. L. (2021). Heartbeat classification using PhysioNet databases. Scientific Data, 8, 286.
Ribeiro, A. H., et al. (2023). Challenges in ECG interpretation training. Journal of Electrocardiology, 78, 1–8.
SNOMED International. (2023). SNOMED CT: International Edition. https://www.snomed.org
Thistlethwaite, J., et al. (2019). The effectiveness of case-based learning in health professions education. Medical Teacher, 41(5), 525–533.
Zhang, Z., et al. (2022). Real-world ECG data in medical education. Frontiers in Cardiovascular Medicine, 9, 842311.
Published
How to Cite
Issue
Section
Copyright (c) 2025 María Isabel Cruz Luzuriaga, Jorge Alberto Medina Avelino, Martha Yolanda Morocho Mazon, Jessenia Elizabeth Mora Pinto

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
